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Synopsis

In order to study the nature of the essentiel singularities occurring in Einstein’s theory 
of gravitation the collapse of an arbitrary spherical distribution of incoherent matter is inve­
stigated in detail. The treatment is characterized by the use of one global Gaussian system 
of coordinates in which the matter is constantly at rest and which is free of coordinate sin­
gularities both inside and outside the matter. These coordinates have a simple physical in­
terpretation and in the empty space outside the matter they represent a substitute for the 
rather formal Kruskal coordinates. The metric tensor is expressable in terms of simple well- 
known functions of the coordinates and the radial motion of light signals and the line shiit 
of spectral lines are given by simple formulae.
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Introduction

One of the most surprising and disturbing discoveries in later years is 
that of the occurrence of essential singularities in the solutions of Einstein’s 
gravitational field equations. Unlike the “coordinate singularities”, as for 
instance the well-known Schwarzschild singularity in empty space, essential 
singularities cannot be removed by any change of coordinates. The occurrence 
of non-trivial singularities in a physical theory may generally be taken as 
a sign that the theory has been applied to a phenomenon that lies outside 
the domain of applicability of the theory. Thus in the gravitational case one 
would be inclined to conclude that Einstein’s theory breaks down in regions 
of space-time close to the singularities i.e. for extremely strong gravitational 
fields - a thought that was not unfamiliar to Einstein himself.1

The most general proofs of the inevitability of singularities in Einstein’s 
theory were given by Penrose (1965), Geroch (1966) and by Hawking and 
Ellis (1968),2 who showed that this phenomenon is independent of the 
special form of the energy-momentum tensor of the matter provided the 
equation of state is such that

f.i°c2 + p > 0 I

everywhere inside the matter. Here /z° is the proper mass density regarded 
as a scalar, p is the pressure and c is the usual universal constant.

In order to study the nature of the singularities a little more closely 
we shall in this paper reconsider the simple problem treated by Oppenheimer 
and Snyder in 1939.3 These authors considered a model consisting of a 
spherical distribution of incoherent matter which initially (at t = 0) is at 
rest and fills a sphere of finite radius with constant density. Due to the mutual 
gravitational attraction the matter will start contracting and after some time 
the appropriate solutions of Einstein’s field equations develop singularities 
both inside and outside the matter. We shall here consider the somewhat 
more general case where the proper mass density initially is an arbitrarily 
given function of the distance from the centre. Of course, this does not make 
the model much more realistic, but the justification for treating this model 
in more detail is that the solution of the field equations, also in this more 
general case, can be expressed by simple well-known mathematical functions 

1*  
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and that the Hawking-Penrose condition I obviously is satisfied in this case, 
since p = 0 for incoherent matter and p° is positive. Thus the case considered 
represents the simplest imaginable illustration of the general theorems.

1. A Global System of Comoving Gaussian Coordinates

Since the physical system considered is spherically symmetric we can 
introduce a system of coordinates

= {r, 0, <p, (1-1)

in which the line element in 4-space

ds2 = gtkdxidxk (1-2)
is of the form*

ds2 = a(r, H dr2 + R(r, R)2d£>2 - b(r, t)dt2 I
(1.3) 

dX22 = dQ + sinWçA |

The functions a, R and b are determined by Einstein’s field equations 

G*--*7*  (1.4)

which have the “conservation laws”

= 0 (1.5)
as a consequence.

For incoherent matter T*  has the form

l\k = h°UiUk = p°c2UiUk (1.6)

where L’i is the four-velocity of the matter (divided by c) and the scalar 
function

h° = p°c2 (1.7)

is the proper energy density as measured in a local rest system of inertia. 
From (1.6) and (1.5) we obtain the law of conservation of proper energy 
in the form**

(h*U k)-,k = -L= 
]/~9

In our case h°(r, /) and U\r, R) are functions of r and t only, and the 
determinant g is (by 1.3)

*) In this paper the variables t, T, t, t0 etc, denote time variables multiplied by the 
universal constant c.

**) Semicolon and comma denote covariant and usual partial derivatives respectively.

(\/- gh°Uk),k = 0. (1.8)
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g = — ab Risin2O. (1-9)

Since g must be negative in any physically meaningful case we must have 

ab > 0. (1.10)

In order to secure a simple and unique physical interpretation of the 
solutions of the field equations we shall in this paper preferably use coordi­
nates (1.1) for which a and b are positive:

a > 0, b > 0. (1.11)

Only in this case does the system S of coordinates in 4-space correspond to 
a uniquely defined system of reference R in the 3-dimensional physical 
space with reference points (r, 0, cp) = (constants) that are moving with sub- 
luminar velocities, so that real measuring instruments can be attached to 
the reference points. The distance a between two reference points p± and p2 
on the same “radius vector’’, as measured by means of standard measuring 
sticks at rest in R, is then at the time t given by

fi

r2

(1-12)

Similarly, the time r0 between two events Px and P2 at a fixed reference 
point p, as measured by a standard clock at rest in p, is

^1

(1.13)

In their treatment of the problem Oppenheimer and Snyder used 
different systems of coordinates (and corresponding different systems of 
reference) inside and outside the matter. Inside the matter sphere they used 
a comoving system of reference of the type first introduced by Tolman, 
relative to which each matter particle is constantly at rest. Since the particles 
of incoherent matter are freely falling in the gravitational field, it follows 
that b is a function of t only; for the acceleration of a free particle momen- 

, db r p
tarily at rest is quite generally proportional to b — Therefore b must be 

zero in a comoving system of coordinates, and by a suitable transformation 
of the time variable it is then always possible to make

b = 1. (1.14)
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Ina comoving “Gaussian” system of coordinates of this type the components 
of the four-velocity are

^ = <5i4, Ut = -Ôi4 (1.15)

and the matter tensor (1.6) has only one non-vanishing component:

7? = - h°(r,0WM. (1.16)

In this case the conservation law (1.8) reduces to

(|/-ffh»),4-0. (1.17)

In the empty space outside the matter Oppenheimer and Snyder used 
so called “curvature coordinates”

Xi = {R, 0, (p, T} (1.18)

in which the line element is of the form

ds2 = A dR2 + R2dQ2 - BdT2. (1.19)

As shown first by Birkhoff the metric is in these coordinates outside matter 
in arbitrary radial motion given by the static Schwarzschild metric. Thus

A- 1 ,p. (1.20)
1 — a IR

where a is the Schwarzschild constant

xMc2 xH
a = ------  = — ,

4% 4tz

M is the total gravitational mass of the system and H = Me2 is the total 
energy of matter plus gravitational field.

By matching the internal and external expressions for the metric at the 
boundary of the matter one then obtains the motion of the boundary relative 
to the static system of reference of the system of curvature coordinates. 
However, the line element (1.19), (1.20) in the latter coordinates has the 
well-known drawback that the quantities A and B are singular for R = a 
and that the conditions (1.11) are violated for R < a. This makes the physical 
interpretation of the solution somewhat obscure for R < x, and as we shall 
see it may easily lead to a wrong physical picture of the contraction process. 
On the other hand we cannot simply exclude the region R < x ; for the 
determinant (1.9) is here g = - Ri sin20, i.e. it remains finite and negative 
in the whole domain R > 0. In fact the Schwarzschild singularity is only a

(1.21)
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coordinate singularity which can be removed by suitable coordinate trans­
formations. This was shown already in 1933 by Lemaître4 who introduced 
a Gaussian system of coordinates which has a singularity at R = 0 only. 
Contrary to the Schwarzschild system the Lemaitre system of coordinates is 
not stationary. It has even been shown by Serini and by Einstein and 
Pauli5 that no non-singular solutions of the field equations for empty space 
exist that are stationary and for which p44 - 1 + a/r for r -> oo .

Now one could think of repeating the Oppenheimer-Snyder considera­
tions with the curvature coordinates replaced by the Lemaître coordinates 
in the outer space, in which case the reference points would be moving like 
freely falling particles both in the external and in the internal system of 
reference. Still this would not be quite practical; for the initial velocities 
of the reference points in the Lemaître system are not adapted to the initial 
conditions of our problem. Therefore we shall now try to introduce one 
global system of coordinates in which the matter is constantly at rest and 
where b is given by (1.14) throughout space-time.

The initial distribution of matter at t = 0 is described by

7i°(r, 0) =/z°(r, 0)c2 (1.22)

which may be regarded as a given function of r that vanishes for large values 
of r. Since the matter is initially at rest we have for t = 0 and arbitrary r 

dh°
A°(r’0)" äT(r’0) = 0- (1-23)

In our system of coordinates the metric (1.3) is throughout of the form

ds2 = a(r, t) dr2 + R(r, t)2dti2 - dt2. (1-24)

The reference points (r, 0, 9?) = (constants) are moving as freely falling 
particles and inside the matter the numbers (r, d, cp) are simply fixed labels 
of the different matter particles, r = 0 corresponding to the centre of the 
matter. According to (1.13) with b = 1 the time variable t is equal to the 
time t0 of standard clocks at rest in the reference points, and inside the 
matter t is simply equal to the proper time of the matter particles. The form 
(1.24) of the metric is unchanged under arbitrary transformations

f = /-(r) (1.25)
of the radial coordinate.

The matter tensor Tf is again of the form (1.16) and the field equations 
(1.4) consist of three independent equations only:
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Gf = O, G} = O, G*  = x/i°. (1.26)

For given initial conditions they are just sufficient to determine the three 
unknown functions a(r, /), R(r, /) and h°(r, t). In view of (1.23) we are 
looking for solutions a and 7? that are stationary at t = 0, i.e. for which the 
partial time derivatives of first order are zero at t = 0. In particular we 
require

7ï(r, 0) = 0. (1.27)

By a suitable transformation of the type (1.25) we can always arrange it 
so that

R(r, 0) = r (1-28)
i.e.

R'(r, 0) = l. (1.29)

With the expressions for Gtk following from (1.24) the field equations (1.26)
are

(1.30)

where dot and dash denote partial derivatives with respect to t and r respec­
tively.

Multiplication of (1.30) by RR' /a yields

d ,
— (R 21 a) = 0 dr 1 ’ (1.33)

which shows that R'2/a is a function of r only. If we denote this function 
of integration by 1 - ^(r) we obtain

If2
a =----------- .

1 - v(f)

Introduction of this expression for a into (1.31) gives

2RR + R2 + ^(r) = 0.

(1-34)

(1.35)
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Thus

which shows that R R2 - is a function of r only; but this function

must be zero for all r on account of the initial conditions (1.27), (1.28). Hence

= Ä[27rä + R2 + y>(r)] = 0

)

and from (1.35)
R2 + = rip/R

R = - ry/2R2.

(1.36)

(1-37)

By means of (1.34) and (1.36) the field equation (1.32) may be written

R2R'
xh°(r, /). (1.38)

Since (r^)' is time-independent it follows from this equation that 
xh°(r, t)R2R' is a function of r only, say

xh°(r, 0 R2R' = 3r2Â(r). (1.39)

This is in accordance with the conservation equation (1.17) since

| — g = R2 |/aôsin 0 = R2R'sin 0 /|/1 — y>(r) (1.40)

from (1.24) and (1.34). The function A(r) is obtained by putting t = 0 in
(1.39) and by using the initial conditions (1.28), (1.29) which gives

2(r) =
xh\r, 0)

3 (1-41)

Thus Â(r) may be regarded as a known function of r given by the initial 
distribution of matter. The energy density 7i°(r, f) at any time is, by (1.39) 
and (1.41),

A°(r, 0
3r2Â(r)
xR2R'

r2h\r, 0)
R2Rr

= /z°(r, f)c2. (1-42)

If we introduce (1.39) into (1.38) we get the following differential equation 
for the function y(r):

(ry>)' = 3r2A(r), (1.43)

From (1.10), (1.14) and (1.34) it follows that y>(r) in any physically mean­
ingful case must lie in the interval
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^(r) < 1 . (1.44)

Thus ry) =*  0 for r = 0 and by solving (1.43) we obtain
r r

y)(r) = -J*r 2Å(r)dr = r22(r)---- J*  r3Å'(r)dr (1-45)

o o

which determines y)(r) uniquely for a given initial distribution of matter.
When 7?(r) has been determined by (1.45) we can solve the differential 

equation (1.36) for R(r, f). It is easily verified that the solution corresponding 
to the initial condition (1.28) is given by

R(r, /) = rC(u) (1-46)

u = t\'y)lr2 (1-47)

where the function 
equation

C(u) of the variable u is a solution of the differentiel 

1
C(u)

1 (1-48)

with 

From (1.48) we obtain
C(0) = 1.

and by differentiation

C'(u) = ±
i 1 - C(u)

C(u)

'flie solutions of (1.50), (1.49) arc

or

T u = j|//r£zrfC^/C(1„C) + tan-i|/L_c

T u = ]/C(l - C) + cos-yc = |/C(1 - C) + - - sin_1[/C,

(1-49)

(1.50)

(1.51)

(1.52)

(1.53)

where the signs here correspond to the signs in (1.50).
The graphical picture of the function C(u) of u is a cycloid with the para­
metric representation
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C = y(l + cos?;), u = ±(t] + sin?;). (1-54)

We have now obtained the complete solution of our problem in a global 
system of coordinates Sm that is Gaussian and in which all parts of the 
matter are constantly at rest in the corresponding system of reference Rm- 
In Sm the metric in 4-space is

R'(r, f)2

2. Discussion of the Solution

In a contraction process starting from a state of rest at t = 0 the solution
(1.55) is regular everywhere in a region of r and t for which u in (1.56) 
lies in the interval

0 < u <-. (2.1)2 V 7

The corresponding values of the parameter ?; in (1.54) and of C(u) lie in 
the intervals

c/.s2 = — - dr2+ R(r,t)2dQ2-dt2. (1.55)
1 - V<r)

Here y(r) is determined by the given initial distribution of the matter through
(1.45) and R(r, t) is given by (1.46) — (1.54). Thus

R = rC(ii), u(r, f) = ü = j/ip/r,

r 2tp

R = r C'(ii)ù = j/^C'(u), 

R' = C(u) + rC'(u)u'.

(1.56)

For simplicity we shall assume that A(r) is a never increasing function of r. 
Then r

Jr3 * * *2'(r)dr<0 and R' > 0. (1.57)

o

The matter density at any time is given by (1.42), and the naturally 
measured distance from the centre of a fixed point in the matter is from (1.12)

(1.58)
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In this region
0 < g < 71, 1 > C(n) > 0.

and we have to use the lower signs in (1.52), (1.53). Further

R'(r, /) > 0, R < 0

from (1.56) and (1.57), and
Æ = rC < r.

71
However for u — we have

2

(2.2)

(2-3)

(2-4)

(2-5)

C(u) -> 0, C’(n) R 0. (2-6)

Thus for any fixed value of r in the interval 0 < r < co the metric becomes 
singular after a finite time ts(r) measured on a standard clock at rest in Rm-
This time is given by

71
ll(r> #«) = 2 (2-7)

or from (1.47)

^(r) = |Z— (2-8)
2 1 V^(r)

which goes to infinity for r -> oo (comp. (2.13)). According to (1.40) the 
quantity |/— g is proportional to R2R' and from (1.56), (1.57) and (2.3) 
we have

which shows that l/ — g goes to zero as C3/2 for

dealing with essential singularities in this limit, and it has no physical mean­
ing to extend space-time beyond the region defined by (2.1). From (1.42) 
it follows that the proper mass density at any point inside the matter with 
constant r goes to infinity for t -> ts(r). This is accompanied by a singularity 
in the metric that spreads outward into the empty space outside the matter 
according to the equation

R2R' = r2 (2-9)

u -> —. Therefore we are
2
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(2.10)

or

(2.12)> 0

-► co (comp. (2.21)). At any time t < ts(r)

(2.13)
where

(2.14)a = 3

r& < a

(2.17)

ù
i u

which is constant in time. As we shall see now the constant a, which also 
may be written

71

m = 2

u(r, Z) =]/rpt/r = |

from (1.56) and 1(1.57). Vs ->0forr
the metric is regular for all r. There are no coordinate singularities in Sm- 

For an insular system of the type considered here the function h°(r, 0) 
or A(r) is zero in the empty space outside the matter, say for r > r&. In this 
region we get from (1.45) and (1.41)

y(r) = a/r

fi(r, f) = 0. (2.11)

By differentiation of (2.10) we get for the velocity with which the singularity 
propagates

(2.15) 

on account of (1.44). The naturally measured spatial volume element is

. R2R' sin 0
dV = I y drdOdcp = y ab R2 sin 9 drd9d(p = --------— drdQdtp (2.16)

J*  r2A(r)dr = — J J J ^°(r> 0)r2 sin 9drdOdtp 

o

is a constant which has a simple physical meaning. For a real physical 
system we must have

I 1 - V<r)

which for constant (r, 9, cp) and (dr, d9, dcp) goes to zero for t -> ts. However, 
from (1.42) the total proper matter energy is

H° = JJJ h°(r, t)dV = j j j A (r> 0) ) sin OdrdQd(p

4rtp3/2
.

(2.18)
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represents the total energy of the system, i.e. the total energy of matter phis 
gravitational field.

In any asymptotically Lorentzian system of coordinates the total four- 
momentum Pi of an insular system is given by6

Pi = lim - y^n;_r2sinO dOd(p (2.19)
r-> oo C j

where the integration is extended over a large sphere f of radius r0. n2 is 
a normal unit vector in the outward direction and is the v. Freud super­
potential.7 For r > l’b we get from (1.56), (2.13), (2.3)

R = r C(u), zz = f|/a/r3, ù = | a/r3

u = - 3u/2r, 7^' = C(u) + |Ul//^-C ,

B = -(/a/rh/i - 1 = - \/(x/R) - x/r

and from (2.12)
vs = - ii/u = ^-|/a/r = Al xlr-

3zz 3%

(2.20)

(2.21)

It is seen that u -> 0 in the limit r -> go for any constant t, and a Taylor 
expansion of the function C(zz) for small u gives by (1.49)—(1.51)

C(u) = 1 - |u2 + O(zz4) 

R'(u) = 1 + fzz2 + O(zz4).
(2-22)

In calculating Pi in (2.19) we shall only need the asymptotic expression of 
gik entering in in which terms of order zz2 = t2a/r3 can be neglected. 
In this approximation we have C = 7?’ = l,7? = r and we get for the symp- 
totic form of (1.55)

dr2 
ds2 =-------- - + r2dQ2 - dt2 (2.23)

1 — a/r

which is time-independent. For r -> go this goes over into the Minhowski 
line element written in polar coordinates. Therefore introducing spatial 
coordinates (x, y, z) that are connected with (r, 0, y) in the same way as 
Cartesian and polar coordinates in a Euclidian space, we obtain an asymp­
totically Lorentzian system of space-time coordinates
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= {.r, y, z, t]

15

(2.24)

in which the expression (2.19) can be safely applied. In these coordinates 
the metric tensor of the line element (2.23) takes the form

a /1 \
gtk = T]ik + ~nmk + (2.25)

where rjik is the Minhowski tensor and

(2.26)

0(11r2) is a term of order 1 /r2 which does not give any contribution 
to the integral (2.19) in the limit r -> oo .

With gik given by (2.25) the superpotential is easily calculated. Neglecting 
terms of order 1 /r3 we obtain

and from (2.19)

(2.27)

~ <V xc
- {P. - H/e}. (2.28)

Thus the total momentum P of the system is zero and the total energy H is

(2.29)

A comparison of this equation with (1.21) showrs that the constant a in 
(2.13), (2.14) or (2.18) is identical with the Schwarzschild constant.

So far we have not made any assumption about the initial distribution 
of the matter, except that A’(r) < 0 and Â(r) = 0 for r > ry. Let us now 
consider the case where A(r) is equal to a constant 7.0 for r < rc < i'b, i.e.

In the inner region r < rc we obtain from (1.45), (1.56)

y; = Â0r2, R = rS(t), S(t) = C(u),

u = |/â0/, ù = |/Â0, il = 0,

R = rS, R' = C(u) = S(t)

(2.30)

(2.31)
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and the line element (1.55) takes the simple form

ds2 = S(t)2
dr2

1 - V2
+ r2d&2 - dt2.

In the same region we get from (1.42)

A°(r, /)
3r2Â0
xr2S3

h°(r, 0)
5(03

(2.32)

(2.33)

and the singularity occurs simultaneously at all points inside rc at the time 

ts = tî/2|/â0. (2.34)

From (1.58) we get for the naturally measured distance

f dr C ( I z0 t) . < ,— \cr(r, t) = 5(0 —----------- = —7 sin 1(|/20r). (2.35)
|/1 - V2 I Â)

For constant r this distance decreases steadily in our case to the value zero 
for t -> ts, which shows that we have contraction of the matter when C’(u) 
is negative.

If we make the transition from the constant value Âo of Â(r) for r < rc 
to the value Â(r) = 0 for r > rb sufficiently smooth in the interval rc < r < rb, 
the components of the metric tensor in (1.55) will be continuous and differ­
entiable in the whole region of space-time with t < ts(r), even if r& - rc is 
very small. However, it should be remarked that in the limit r,_ -> rb, where 
2(r) is a step function at r = rb and therefore

Âor^ = a/r&, (2.36)

the quantities ii in (1.56) and hence R' and a in (1.34) are discontinuous 
at r = rb. According to (1.38) this is directly connected with the disconti­
nuity of 7i° at this point. The relation (2.36) between and r& is a good 
approximation also for finite rb — rc provided that

(r& - rc) / r& « 1 ■ (2-37)
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3. Curvature Coordinates

According to (1.55) the area ol' a sphere of constant r and I is equal 
to 4% R2 and the “curvature radius” R is a function of r and t given by

Mat.Fys.Medd.Dan.Vid.Selsk. 30 no. 7.

R = R(r, t) = r C(u) = r C ( l\/ip I r2). (3-1)

We are now looking for a system Sc of curvature coordinates

Xi = {R, 0, <p, T} (3.2)

in which ds2 is of the form (1.19):

ds2 = AdR2 + R2dQ2 - BdT2. (3.3)

To this end we have to find a transformation

T = (p(r, t) (3.4)

which together with (3.1) brings (1.55) into the form (3.3). This is brought 
about by choosing (p(r, t) as a solution of the partial differential equation 

(1 - ^(r))ç/(r, /) - RR'(p(r, t) = 0. (3.5)

In fact, from (3.1) and (3.4) we obtain by differentiation and by solving 
for dr and dt

dr = ((pdR - RdT) I (R'tp - RtpA I
(3-6) 

dt = (R' dT — (p'dR) I (R’ÿ — R(p') •

When this is introduced into (1.55) it is seen that the terms containing 
dRdT cancel, on account of (3.5), and ds2 takes the form (3.3) with

R’2(p2 — ç/2(l - y)
(1 — ip)(R'<p — ÏRp')2

B = fl,2(i - - fl2)
(i — ip){R'(p — Rq'y2

Eliminating cp' by means of (3.5) and using (1.36) we obtain

1 1 — w
------ r- , B = .1— rip IR (p\l — rip IR)

(3-7)

(3-8)

In the system Sc the metric tensor is more singular than in the system 
Sm of section 1 and 2. Besides for

R = 0 (3-9)
2
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which is the essential singularity (2.11), A and B are singular also at

R = rip (3.10)

and for R < rip, the conditions (1.11) are violated since

A < 0, B < 0. (3.11)

In empty space, where (2.13) holds, the singularity (3.10) is identical with 
the Schwarzschild singularity at

R = a. (3.12)

From the form (3.3) of ds2 in Sc one woidd be inclined to draw the 
wrong conclusion that the essential singularity (3.9) occurs at the centre of 
the matter only. It is true that R = 0 at the centre r = 0; but from (1.46) 
it follows that R is also zero for r 0 whenever C(zz) = 0, i.e. along the 
whole curve (2.7) which also concerns points outside the matter. If we put 
t = 0 in (3.5) we obtain by (1.27)

<p'(r, 0) = 0 (3.13)
or

ç?(r, 0) = constant

It is convenient to choose the value of this constant equal to zero, i.e.

(p(r, 0) = 0 (3.14)

for then the time variable T in the system Sc is zero for all events at t = 0 
the time coordinates T and t coincide at the origin T = t = 0.

In the empty space outside the matter, where ip = a/r, the solution of 
the differential equation (3.5) with the initial condition (3.14) is given by 

9?(r, 0 = /[ 1 a/r + 2[ a(r - a)tan 1
r - R

R~

+ 2alog
I R(r — a) + |/a(r - R)

|/r I R - a I

(3.15)

where R(r, t) is the function of r and t given by (3.1) and | R - a | is the 
absolute value of R - oc, i.e.

R — oc for R > oc
(3.16) 

oc — R for R < oc.

Partial differentiation of (3.15) with respect to t and r gives after a somewhat 
lengthy calculation using (2.20) and (1.52)
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1/1 — a/r , RR'
----- , <P = -7=

1 — a IR |/1 - a/r(1 — a/ /?)
(3.17)

which shows that (3.15) is a solution of (3.5) with ip = x/r. Further since R = r 
for t = 0 it also satisfies the initial condition (3.14). Since r > r& > a in the 
outer space and R < r the function T = cp(r, t) is real and positive for t > 0 
and arbitrary r. For R -> x this function diverges logarithmically. It is this 
singularity in the time transformation (3.4) that causes the coordinate sing­
ularity of the metric in Sc at R = x.

With 99 given by (3.17) and rip = x the quantities A and B in (3.8) 
reduce to the Schwarzschild expressions

(3.18)

in accordance with Birkhoff’s theorem. In a region of space-time where 
R > x and A and B positive, the system Sc furnishes the simplest and most 
convenient description of the motion of particles and light signals. This is 
above all due to the fact that the system of reference Rc corresponding to 
Sc is rigid. According to (1.12) the naturally measured radial distance a is

(3.19)

which is time independent and by (1.13) the time r0 of a standard clock 
at a fixed reference point in Rc is

r0 = T[/l — a) R. (3.20)

However in a region where R < x the expressions (3.19), (3.20) have no 
physical meaning. The reason for this becomes clear when we consider the 
motion of a point of constant (/?, 0, cp) relative to the ‘rest system’ Sm of 
the matter which is described by the equation (3.1) with constant R. Thus 
it moves radially outward with the velocity

jR [/(ripIR) - |/(a/7?) - a/r
R' ~ R' = ÏÏ'_ (3.21)

on account of (1.56) and (2.20). On the other hand we get from (1.55) for
an outward moving light signal for which ds2 = 0

2*
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(3.22)
L

(3.23)

and we have according to (2.20), (2.22) and (3.21)

(3-24)« I-
R

dr 
which is smaller than

<7/

dr
C = li =1, R = r » a, — 

dl

for R < a. Thus in the region R < a the reference 
R

points of Rc are moving with super light velocities so that it is impossible 
to attach real measuring instruments to these points. This explains why the 
expressions (3.19), (3.20) are meaningless in this domain. On the other hand, 
if r is very large compared with a the quantity u2 = 72a/r3 will during a long 
period of time be small compared with 1. In this region

a/r « 1, ii2 = 72a/r3 « 1

Thus, in the region of space-time (3.23) which covers the larger part of the 
outer space during a long time the systems of reference Rc and Rm coincide.

4. Radial Motion of Free Particles and Light Signals

On account of the just mentioned “unphysical” motion of the system 
of reference Rc for R < <x it is preferable to describe the motion of free 
particles and light signals in the system Sm with the metric (1.55). The 
simplest solution of the equations of motion for a free particle is given by

(r, 6, 9?) = (constants) . (4.1)

In terms of the radial curvature coordinate the motion is described by (1.46) 
with constant r:

R = r C(u) = r C (/[/ip I r2). (4.2)

Thus, R is a steadily decreasing function of the time t measured on a standard 
clock following the particle. For dr = 0 we get from (3.1) and (3.4)

dli = Rdt, dT = ipdt. (4.3)

In empty space this gives by (2.20) and (3.17)

dli = - |/(a/R) - a I rdt, (4-4)
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dR ^(a/B) - a/r

dT j/1 — a/r
(4-5)

Thus, the “velocity” dR I dT of the particle in Sc is positive for R < a in 
spite of the fact that R is steadily decreasing. This is due to the circumstance 
that T is decreasing along the time-track of the particle for R < a as is seen 
from (4.4). Further since T -> co for R -> <x observers in Sc might come to the 
conclusion that the value R = a never can be reached if R initially is larger 
than a, although we know that this happens in a finite time measured on the 
standard clocks.

For r = r& where ip = oc/rb we get from (4.2)

Rb = rb C(ub) = rbC[t\/(x.lrl) (4-6)

which describes the motion of the boundary of the matter. Rb decreases from 
the value rb > a. at t = 0 to the value Rb = a in a finite time fa(r&) determined 
by the equation

C(^(r&)|/a/r&) = a/r&- (4-7)

Introducing this value for C into (1.53) we get for this time

fa(rb) = r6|/l - a/rb + - sin_1|/a/r&j. (4.8)

Somewhat later at the time

ts(rs~) = rb\/rblcc- (4.9)

where C = 0 the surface of the matter runs into the singularity (2.11) which 
then spreads into the outer space with the velocity (2.21). The time interval 
txs in which Rb of the surface decreases from the Schwarzschild value a to 
the value zero is

txs = ts(rs) - ^(rs) = rb\/rblccsin a/rb) - rb\ 1 -a/rt,. (4.10)

As an example we consider a spherical system of incoherent matter 
with the mass and radius of a typical galaxy, say M = lO45^/?? and rb = 1023 
cm. Then a — 1017 cm from (1.21). According to (4.8) such a system would 
collapse through the Schwarzschild radius after a time

tx(rb)/c ~-4 1016 sec « 160 million years. (4.11)

At this time the individual stars in the galaxy would still be far from touching 
each other, so that the approximation of incoherent matter would seem not
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to be too unrealistic. Provided the galaxy is non-rotating this phenomenon 
should actually occur after the comparatively short time (4.11). After a 
further very short time tas/c our model predicts a total collapse of the matter 
into the singularity. For a/rb « 1 (4.10) reduces to

tas/c = a/2c ^19 days (4.12)

in our case; but in the later part of this process the assumption of zero 
pressure is of course highly unrealistic. During the first 10 million years 
of the contraction process the quantity u2 = t2a/r^3 is only about 0.01. Thus, 
we are in the region (3.23), where the systems Rc and Rm coincide for the 
whole outside space r > r&. During the time interval

Za(r0) < t < ts(rb) (4.13)

the system represents a “black hole”, i.e. no information can be transferred 
from the surface of the matter to regions of space-time where R > a. In 
order to study this phenomenon a little more closely we need only to con­
sider the motion of light signals through empty space; for no real signal 
can move faster than light. From (1.55) and (2.13) we obtain for the radial 
velocity of light, since ds2 = 0 for such signals,

(4.14)

with R' given by (2.20). Hence

(/r\ l/l - air
dt)~ *-ir- (4-15)

where the upper and lower signs hold for signals that are moving in the 
outward and inward directions, respectively, relative to Sm, i.e. relative to 
the matter. The changes of the curvature coordinates R and T along the 
time-tracks of the signals are by (4.15), (3.4) and (3.17)

(±7? + |/l

(4.16)

or using (2.20)

— a/r)/(I — a/Ä),

— = ± |/ 1 - a I r - |/ (a / R) - a jr

(4.17)

(4.18)
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c/— - (|/1 - «//i). (4.19)

The solutions of the two differential equations (4.15) are given implicitly 
by the equations

F±(r, 0 = C± (4.20)

where C+ and C_ are constants of integration and F+ and F_ are the following 
functions of r and t :

\R — a 
F±(r, 0 “ ± 99(r’ 0 - F - a log — (4.21)

In fact, by differentiation of these functions we get

(4.22)

(4.23)

which shows that the functions F±(r, /) are integrals of the motion of the 
light signals.

When the signals start at the point r0 at the time t0 the motion of the 
outward and inward going signals are described by the two equations

F±(r, 0 = F±(r0, Q (4.24)
that also may be written

± (T - T.) - (R  R,) - « log - 0 (4.25)
I Fo - a I

from (4.21) and (3.4). Two signals starting at the times f0/c and (f0 + g?/0)/c 
from the point r0 will arrive in the fixed point r at the times t[c and (/ + dt)/c 
respectively, where the relation between dt and dt0 is obtained by differ­
entiation of (4.24):
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F±(r, t)dt = F±(r0, t^dt^
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(4.26)

If the light at the start from r0 has the (standard) frequency r0 and the 
wave length 20 = c/v0, the interval between the emission of successvie 
wave crests is dt0 = c/v0 = 20 and the corresponding interval for their arrival 
in r is dt = c/v = 2 where 2 is the observed wave length at r.
Then, we obtain the relative shift of the spectral lines

2 — 20

from (4.26) and (4.23) which give

2
(4-27)

±JZ1 - «/r0 - tip

1 - a/^o
1 - a/R

± |/1 — a/r — 7?
(4.28)

The function F+ given by (4.21) and (3.15) contains a term — 2alog — 
so that a

F+ -> co for R a (4-29)

while F_ remains finite in this limit, since the logarithmic terms in F_ cancel.
Let us now first consider the case of an outward moving signal, where 

the upper signs hold in the preceding formulae. If /0 lies in the interval

since I according to (4.15) with the plus sign never becomes negative.

(4.13) and r0 is equal to rb we have 7?0 = 7?(r0, t0) < a and F+(r0, t0) is a 
finite constant. Then it follows from (4.24) and (4.29) that R can never 
become equal to a during the motion, i.e. the signal can never penetrate 
into a region where R > 0. At the first moment this is somewhat surprising,

Ö
However the outward velocity is zero for R' = <x> which happens when 
u = Z|/a/r3 = %/2. Thus the signal does not stop before it runs into the 
singularity (2.7) where r and t have values (r*,  f*)  connected by the equation

u*  = /:i:| a/r;3 = %/2. (4.30)
For these values also

77*  = 7?(r*,  f*)  = 0 (4.31)

which shows that R must decrease along the time-track of the signal from 
the value 7?0 to the value zero while r increases from r0 to r*.  This is in 
accordance with (4.18) since dR / dt is negative all the time for R < a. Also 
it follows from (4.19) that dT/dt > 0 in this case, i.e. T increases from the 
value to the value
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T*  = /*)  = f*|/l  - a/r*  + 7r|/a(r*  - a) (4.32)

obtained from (3.15) by putting Æ = = 0 . Further we have by (4.25)
with R = R*  = 0

T- = To - Ro + a log -- (4.33)
a - Ro

which is indeed larger than To for 7?0 < a. The equations (4.30) and (4.33) 
with (4.32) determine the place r*  and the time t*  at which the light ray 
runs into the singularity.

For r0 = rb and t0 < ta(rb) we have Ro > a and the outward going light 
signal will proceed to arbitrarily large values of r and of R = r C(/^/a/r3). 
This follows at once from (4.18) and (4.15) which show that dR/dt and 
(dr I dV)L are positive all the way. An observer sitting at a point with

r » a, R » a. (4.34)

will observe a line shift given by (4.28). With the value for R given by (2.20) 
and with (4.34) we obtain

ÂMo _ |/l-a/r.+ |/(«W-«/r. (4 35)
1 - a/^o

The light is shifted towards the red. For /0 « fa(r&) so that u02 = Z02a/r03 
« 1, i.e. in the region (3.23) we have from (3.24) Co = 1, Ro = r0 and the 
formula reduces to the well-known red shift formula

Â = Â0/|/l -a//?0 (4.36)

for a source at rest in the Schwarzschild system of coordinates. In general 
A > Ao| 1 - a/r0/(l - oc/Rq) > A0/|/l - <x/R0 which shows that the light is 
always redshifted in this case.

Let us now consider the case of ingoing light where we have to use 
the lower signs in the equations (4.17)-(4.28). Since F_ is regular every­
where in the physical region t < ts(r), there is nothing to stop the signal from 
going from a place with Ro > <x right through to the surface of the matter 
sphere even if Rb is smaller than a at the time of arrival. This is also seen 
from (4.18) which shows dR / dt < 0 for all R in this case. Thus the Schwarz­
schild wall R = a separates space-time into two regions I and II with R < a 
and R > a respectively. While information can pass freely from II to I, no 
information about happenings in I can ever reach the region II.

Now consider an observer on the boundary of the sphere r = r& which 
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at the time t < ts(rb) receives light from a distant star with r0 » a and 
Ro » a. Then we get from (4.28) and (2.20)

2 1 — a I Rb
, = ,-----z (4.37)
4o |/1 - a/r& - |/(a//?&)- a/r&

where Rb is the value of R at the time t of reception at r&. When this time 
is small compared with ^a(r&) in (4.8), i.e. in the region (3.23), we have 
Rb = rb and (4.37) reduces to

2 = 20|/l - oc/Rb, (4.38)

the light is shifted towards blue. In the limit t -> £a(r&) where Rb ■+ x we get 
from (4.37)

2 -> 220|/l - x/i-b. (4.39)

For x/rb(( 1, as in the example on p. 21, this corresponds to a redshift. 
Under the same assumption we have for tx(rb) < t < ts(rb), where Rb < x, 
the redshift formula

2 = 20 = 20(l + /a/7?b). (4.40)
y<x/Rb- 1

5. Continuation of the Solution of Section 1 to t < 0

In the preceding sections we have considered a contraction process 
starting from a state of rest at t = 0 corresponding to the initial conditions 
(1.23), (1.27). However, it is clear that (1.55) with (1.56) is a regular solution 
of Einstein’s field equations in the whole region

- fg(r) < t < ts(r) (5.1)

with U(r) given by (2.8). In this region the parameters u and T] in (1.54) 
take on all values in the intervals

71
— — <

2
71

U < , — 71 < T) < r].
2

(5-2)

During the time interval
- U(r) < / < 0 (5-3)

the quantity
u = t^yj/r2 (5-4)
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goes from —%/2 to 0 and C(u) increases from 0 to 1. Thus in the interval 
(5.3) we have instead of (2.3)

(5.5)

corresponding to an expansion process. From (1.56), (5.5) it follows that 
R' is still positive in the interval (5.3), but

R > 0 (5.6)

in contrast with (2.4). More precisely we have

R(r, - /) - R(r, /), K'(r, - f) - R'(r, t) |
i (5-7)

R(r, - f) - — R(r, t). I

In empty space we have in particular from (5.7) and (2.20)

A(r, 0 = |/(a//?)”a7r (5-8)

for t in the interval (5.3).
The system described by this solution corresponds to a spherical distri­

bution of incoherent matter which jumps out of a singularity at t = - ts(r) 
for which u = - n/ 2, R = 0 and expands with decreasing speed until it comes 
to rest at t = 0, after which it performs the contraction process described 
in the preceding sections.

For t > 0 the function <p(r, 0 was defined by (3.15). We extend the 
definition to negative t by requiring that ç>(r, 0 is an uneven function of t, i.e.

9?(r, - f) = - <p(r, 0.

Since R is an even function of t this gives

9?(r, 0 = t\/1 - a/r — 2|/a(r - a)tan_1L/—^— 

r — a) + |/a(r — 7?

|/r I R — a I

for t in the interval (5.3). From (5.9) we obtain

<^(r, - 0 = <p(r, t), <p'(r, - 0 = - <p'(r, 0.

]//?(
2 a log

(5.9)

(5.10)

(5.11)

Since also R is an uneven function of t it follows that the expressions (3.17) 
are valid also for negative t. Therefore, in empty space the transition to 
curvature coordinates is also in the region (5.3) effected by the transforma- 
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tions (3.1, (3.4) with ep given by (5.10), and the metric in Sc is the same 
as in (3.3) (3.18). Since T > 0 for t > 0 and arbitrary r we have T < 0 
for t < 0 from (5.9).

All the considerations performed in the preceding sections for t > 0 can 
now be repeated for the region (5.3). The motion of the boundary relative 
to Sc is again given by (4.6) with negative t. Il starts at t = - ts(rb) with 
Rb = 0 and increases to the value Rb = a for t = - ts(rb) after which it 
increases further to the value Rb = r& at / = 0.

The motions of outward and inward going light signals are still deter­
mined by (4.15) and (4.16), but in view of (5.8) we have instead of (4.18)

— = ± ]/1 - a/r + |/(a/R) - a/r (5.12)

for t < 0. The solutions of the equations (4.15) are again given by (4.24), 
(4.25) where the functions F±(r, /) are determined by (4.21) and (5.10) for 
t < 0, but in this region F+(r, /) is everywhere regular, while

F_ -+ oo for R -> a (5.13)

Therefore, light emitted from a point r0 = rb on the surface of the matter 
sphere at the time t0 < 0 can freely move to the outside region with R > oc 
even if Rb < a at the time of emission /0. This also follows from (5.12) with 
the upper sign since dR I dt is positive for all R. On the other hand, ingoing 
light starting at an event point (r0, f0) with Ro > a, where F_(r0, /0) has a 
finite value, can never penetrate into a region where R < oc on account of 
(5.13). This is also seen from (5.12) with the lower sign, since dR I dt = 0 
for R = oc and dR / dt > 0 for R < a.

Thus, during the time interval

- ts(rb) < t < - tx(rb) (5.14)

where Rb < oc, the system is a “white hole”. Il can emit light into the outside 
world, where r and R are large compared with oc, but an observer on the 
sphere cannot during the period (5.14) receive any light from a distant star 
with r0 » oc, Ro » a. On the other hand for t > — tx(rb) an observer on 
the sphere can receive any message from the outside world since R > oc and 
dRIdt < 0 all the way along the time-tracks of ingoing light signals.

The relative line shift z is in the whole region (5.1) given by (4.27), 
(4.28), but for negative t the quantity R in (4.28), as given by (5.8), has the 
opposite sign of the expression in (2.20) valid for t > 0. Therefore, light 
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of wave length 20 emitted at r0 = rb at a time t0 in the interval (5.3) will 
be observed by a distant observer at r 7? )>> a with the frequency 2 given by

2 |/1 - a/r0 -/(a/770) - a/r0
f 1 /p (5-15)20 1 oc/Ro

which is the reciprocal of (4.37). Thus, if the light received at a place r = rb 
at a time t > 0 from a distant star is redshifted, the light emitted from the 
time-inversed point (r&, - /) as observed by a distant observer will be blue- 
shifted and vice versa.

Similarly, for light from a distant star with r0 7?0 » a that is received 
at a point r = i'b at a time in the interval

— Za(r&) < f < 0 (5.16)
where Rb > <x, we have

2 1 - a/Rb
~ -,----- ----- . (5.17)
20 |/ 1 - a/rb + |/ (a/Rb) - a/rb

This expression is the reciprocal of (4.35), i.e. the light received from a 
distant star at the surface of the sphere is blueshifted.

If the matter inside the sphere is uniformly distributed, the metric is 
given by (2.32) for r < rc, which is identical with the Friedman solution for 
a spatially closed universe with constant positive curvature. According to 
the conventional cosmological ideas there is nothing outside this closed world, 
but the question now arises if the observable part of the universe in reality 
could be the inner part of a “meta galaxy” immersed in a much larger 
closed or open universe. In this respect the usually assumed values for the 
radius and average mass density of the universe are strangely suggestive. 
For a model of the type considered in this section with a radius of 1010 
light years and density 10_29gm/cm3 the Schwarzschild constant would be 
of the order of magnitude of the radius, and it is conceivable that the observ­
able universe at the present time is a “white hole”, so that no information 
from distant stars outside the meta galaxy can penetrate into the interior. 
However, we shall not enlarge upon this picture here.
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Conclusion

In this paper we have reconsidered in more detail the problem of the 
collapse of incoherent matter under the influence of its own gravitational 
field. It serves as a simple illustration of the general theorem of Hawking 
and Penrose according to which singularities will develop both inside and 
outside the matter after a comparatively short time as measured on standard 
clocks at rest in a system Sm in which the matter is constantly at rest (com­
pare the example mentioned on p. 21). Not only does the density of matter 
go to infinity, as would be the case also in Newton’s theory of gravitation, 
but in Einstein’s theory the metric of space-time itself becomes singular at 
the finite time ts(r). In section 2 it was shown that the coefficients of dr2 
and dQ2 in ds2 in general have the following limiting values for t -> ts(r) 
and constant r:

a -> ce , R2 -> 0

and for the determinant g we found

<7 0 for t -> ts(r).

The singularities in question arc essential singularities that cannot be 
removed by any coordinate transformation.

In section 1 it was emphasized that the determinant g must be negative 
in any case which has a physical meaning. Thus the occurrence of the just 
mentioned essential singularities means that the system according to Ein­
stein’s theory after a finite time runs into an unphysical state — a kind af 
nirvana where the time stops and the notions of space and time lose their 
meaning. It is hard for a physicist to accept this and one would rather con­
clude that Einstein’s theory, which so admirably accounts for all phenomena 
in the case of normal gravitational fields, breaks down in cases where the 
components of the curvature tensor of space-time are extremely large.
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